FUSION PTR-TOF 10k - Next Generation PTR-TOFMS

IONICON Analytik GmbH., Eduard-Bodem-Gasse 3, 6020 Innsbruck, AUSTRIA

https://www.ionicon.com/technologies/details/fusion-ptr

≈ ioniTOF MS 10k with a mass resolution of

Fast switching between

and low reaction energy

NO+, O2+

(E/N)

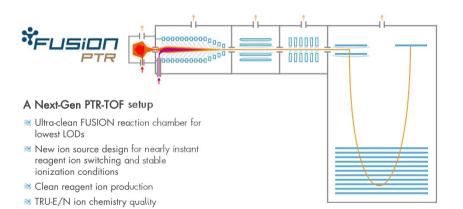
include [3]: H₃O+, NH₄+,

typically 10000 - 15000 m/ Δ m (FWHM)

1000

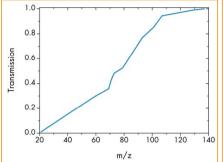
500

10 20 30



Introduction

We present a novel proton-transfer-reaction mass spectrometry (PTR-MS) [1] instrument. FUSION PTR-TOF 10k (IONICON, Austria) features several enhancements compared to state-of-the-art PTR-MS


The novel ion source improves the decoupling from the reaction chamber providing lowest interferences with neutrals and parasitic reagent ions. Within a single second, this source switches from quantitative proton-transfer-reaction with H₂O+ reagent ions to almost fragmentation-free adduct ionization with NH_A^+ . Ion-molecule reactions with organics occur in a fully-controlled environment of a novel ionfocusing RF reaction chamber (FUSION) operated at reduced pressures of 2-4 mbar. This guarantees the needed clean ion chemistry with ion-molecule reactions at predictable reaction energies (E/N) and reaction rates that are crucial for quantitative operation of PTR-MS. With these enhancements, FUSION PTR-TOF 10k achieves lowest limits of detection (< 1 pptV in 1 s) and extremely high sensitivities up to 80000 cps/ppbV at a TOF-MS mass resolution > 10000 m/dm.

Overview

FUSION Ion Source H⁺.D5 Siloxane 4000 NH.D5 Siloxane proton transfer (H₂O+) and 3500 adduct ionisation (NH₄+) [2] 3000 2500 2000 1500

Fusion Reaction Chamber 80000 70000

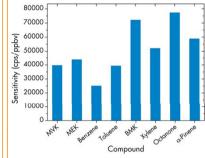
Well defined ion chemistry

Reagent ion purity

 $C_4H_4^+/C_4H_7^+ \sim 2\%$

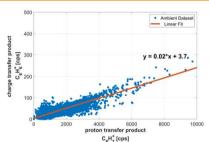
- reaction rate constants
- ➢ No mass cut-off towards lower and higher m/z

Measurement of benzene in H₂O+ mode


Ratio of charge transfer product (O₂+) vs.

★ Ultra clean reagent ion production with:

proton transfer product (H₃O+)

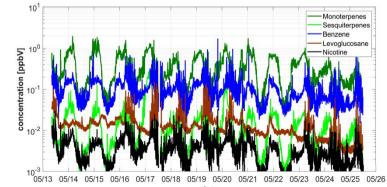

independent of moisture level

□ Data taken from ambient dataset (2 weeks)

Sensitivities for different compounds

- High sensitivities ~ 80000 cps/ppbv
- ★ Limit of Detections < 1 ppty in 1 s
 </p>

1.0 100Td 0.8 0.6 0.4 0.0 0.0 8.0 1.0 G 0.6 0.4 0.2 ۰.0 چ **bT0** 1.0 0.8 0.6 0.4 0.2


Reaction kinetic evaluation

- applied reaction energy (E/N)
- EP3309817) allows to reproduce intensity ratios for all relevant pinonic acid product ions corresponding to E/N values down to 60 Td

Results

Two weeks continuous measurement of ambient air in Innsbruck, Austria

- measurements
- Selected compounds over the course of two weeks
 - Mathropogenic compounds like benzene
 - and sesauiterpenes
 - ★ Local emissions from smoking (levoglucosan) and nicotine)
- ★ Real time measurements in the sub-pptv range
- Simultaneous detection of large range of volatility classes (e.a. levoalucosan and nicotine)

[1] W. Lindinger and A. Jordan, Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev., 27, (1998) 347-375, DOI: 10.1039/A827347Z [2] M. Müller et al., A novel method for producing NH₄+ reagent ions in the hollow cathode glow discharge ion source of PTR-MS instruments. Int. J. Mass Spectrom. 447 (2020) 116254. DOI: 10.1016/j.ijms.2019.116254

40 50

[3] A. Jordan et al., An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR + SRI – MS). Int. J. Mass Spectrom. 286 (2009) 32-38. DOI: 10.1016/j.iijms.2009.06.006

60 70 80